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Abstract-The formation of the melt meniscus and convection heat transfer in the melt is a major issue in 
the float zone technique for growing single crystals. The present study investigates the issues of existence, 
multiplicity and physical realizability of the solutions, based on the concept of free energy minimization, 
to the Yourtg-Laplace equation, representing the liquid menisci formed under equilibrium conditions. The 
physical realizability of the meniscus profile is sharply affected by the material properties and geometry, 
through the dimensionless parameters including Bond number and aspect ratio. A typical meniscus shape 
obtained at Bond numbers commonly encountered in practical configurations is selected for buoyancy 
driven convection and thermocapillary convection heat transfer studies. For the materials and geometries 
of interest, thermocapillary effects dominate over buoyancy effects. The impact of the convection pattern 
on the menscus shape is reflected by the magnitude of the capillary number, which is found to be small in 
this case. Calculations were conducted over a range of Grashof numbers, Marangoni numbers and Prandtl 
numbers to gage the sensitivity of the solutions to the physical properties of the molten material. The 
relative strength of buoyancy-driven convection and thermocapillary convection has the greatest impact 
on the heat transfer results. The results reported here can help assess the suitability of a given float zone 

design. 

Il. INTRODUCTION 

The float zone technique is one of the candidate 
methods for growing single crystals. The main advan- 
tage of the float zone process is that it is a containerless 
process and contamination from the wall, a main 
source of problems for crystal quality control, is 
removed. On Earth, it is mainly limited by the size of 
the melt zone that can be achieved, since the hydro- 
static pressure of the melt zone and the normal stresses 
induced by flow motion is balanced by the surface 
tension between the melt and the ambient fluid. Ano- 
ther problem is the loss of volatile components from 
the melt, which can be circumvented by the use of 
encapsulating liq,uids. The encapsulant can also 
increase the maximum size of the melt zone that can 
be achieved by reducing the hydrostatic pressure 
difference between the melt and its surroundings. The 
objective of this study is to investigate the generation 
of meniscus shapes for floating zone configurations. 
The formation of the meniscus during the melting 
process is a major concern in the successful operation 
of the float zone technique. This aspect and associated 
transport processes will be the focus of the present 
work. Specifically, the issues of existence, multiplicity 
and sensitivity of solutions to the Young-Laplace 
equation representing the liquid meniscus formed 
under equilibrium conditions, will be investigated 
based on a free energy concept originated by Shyy et 
al [l]. The approach is static in nature, which is a 
satisfactory approximation considering the slow speed 

of the movement of the melt typical of most practical 
applications. Although the static consideration can- 
not account for the dynamics of the interface charac- 
teristics, in general, the slow growth rates of many 
crystal processing techniques allow meaningful appli- 
cation of this theoretical framework. Figure 1 (a) is a 
schematic illustration of the float zone process and 
Fig. l(b) is a schematic of the mathematical model 
employed in the present model, which allows, as it 
should, the trijunction point to move to satisfy a given 
value of the static contact angle or other constraints, 
such as a fixed volume of the melt. 

With the theoretical and computational framework 
of determining the meniscus shape in place, this work 
then addresses the issues of thermal transport in the 
melt. Specifically, the role of buoyancy induced con- 
vection, Marangoni convection and their mutual 
interaction affecting thermal transport, excluding 
phase change aspects, will be elucidated in this work. 
Extensive investigations of high Marangoni number 
thermocapillary convection in a square cavity have 
been carried out by Zebib et al. [3], Carpenter and 
Homsy [4,5], combined buoyant and thermocapillary 
flow in a square cavity by Carpenter and Homsy [4] 
and impact of thermocapillary convection on the free 
surface shape by Zebib et al. [3]. Shyy and Chen [6] 
have discussed the interaction of buoyancy and sur- 
face tension-driven convection in a rectangular enclos- 
ure. They discussed the impact of Prandtl number and 
the Marangoni number on the convection and heat 
transfer characteristics in molten alloy. A similar 
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Fig. 1. Schematic of the float zone process and the mathematical model employed. (a). Schematic of the 
float zone process. The melt zone is sustained by the surface tension between the melt and the encapsulant. 
The heating profile is schematically illustrated on the right. Axisymmetry has been assumed. (b) Schematic 

of the mathematical model and geometry employed in the calculation procedure. 

study involving the interaction of thermocapillary and 
natural convection along with phase change effects 
under both normal and reduced gravity conditions is 
discussed in Shyy and Chen [7]. A study involving 
both thermal transport and solute transport is pre- 
sented by Shyy and Chen [8], which also discusses the 
effect of complex geometry in the form of a curved 
boundary. 

Some of the earlier works in the numerical modeling 
of the float zone included thermocapillary convection 
with a highly simplified cylindrical geometry [9-l 11. 
More complex geometries involving deformable free 
surfaces have been considered by Murthy [12], Lie et 
al. [ 131, Neitzel et al. [ 141, Li et al. [ 151, Li and Saghir 
[16], Zhang and Alexander [ 171 and others. In ref. 
[17], the contact lines are fixed and the free surface 
shape is calculated by iteratively satisfying the gov- 
erning equations and the volume constraint using a 
Picard type of iterative procedure. However, in refs. 
[13, 151, the meniscus contact angles are adjusted to 
iteratively satisfy the governing equations and the vol- 
ume constraint. This work considers the interaction 
of buoyancy-induced and thermocapillary convection 
in thermal transport in a cylindrical geometry defined 
by a deformable meniscus. Parameter ranges and 

material properties directly applicable to an exper- 
imental configuration employed for float zone growth 
of single crystals [ 181 have been considered, unlike the 
previous studies. In this study, particular care has 
been taken to obtain accurate solutions by using 
second-order centered discretizations and fine grids, 
unlike the above-mentioned studies. Also, the exis- 
tence and uniqueness of the meniscus profiles have 
been discussed, which is an issue that has not been 
treated in previous studies. For simplicity, this study 
is restricted to convective thermal transport only. 
Considerations of solute transport and phase change 
will be addressed subsequently. While the shape of the 
phase boundary between the melt and the solid can 
affect the detailed transport processes, especially for 
low Prandtl number materials [8, also 2, p. 4481, the 
information gathered from the present effort can serve 
as a basis for that extension. 

2. PREDICTION OF MENISCUS SHAPES 

2.1. Methodology 
Meniscus profiles obey the Young-Laplace equa- 

tion in axisymmetric form [2, 19,201, which relates the 
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curvature of the free surface to the pressure difference 
across it. The governing equation describes the gen- 
eration of surface curvature to balance the sum of the 
hydrostatic pressure and pressurization. Specialized 
to an axisymmetric geometry and isothermal domain 
without melt convection, it can be written as follows : 

f” 1 
(l +fr2)3/2 -f(l +f’y’~z 1 (14 

where Ap is the density difference between the ambient 
and the melt and AP is the pressurization. 0 is the 
surface tension coefficient and the meniscus is 
described by f = r’(y), where r is the radius and y is the 
vertical coordinate. A variety of boundary conditions 
have been treated in literature, such as fixed contact 
angles at both top and bottom [19-211, fixed radius at 
the bottom and fixed contact angle at the top [l] and 
fixedradiusat both topand bottom [lo-12,15,17,22]. 
These conditions have been devised for configurations 
under different physical constraints. In the context of 
floating zones, the boundary conditions to be imposed 
may vary depending on the operating conditions. 
Therefore this study has been conducted with a variety 
of different constr.aints imposed on the solutions. The 
following boundary conditions may be imposed : 

f(y = 0) = rb (lb) 

either 

or 

f(y = h,) = r, (lc) 

f’(y := h,) = tan (71/2-Q. (ld) 

Figure 1 (b) shows a schematic of the geometry. For 
an isothermal liquid bridge, equation (la) can be non- 
dimensionalized with a length scale of rb and a pres- 
sure scale of a/r,, to yield, 

BOY-AP = 
f” 1 

(l+f’2)~,~ -f(l +f2)1/2 1 (2) 
where the italics indicate non-dimensionalized quan- 
tities. Bo is the Bond number defined as : 

B. = Aped 
u . 

In ref. [l], the non-linear differential equation (2) 
was solved subject to a fixed radius at the lower bound- 
ary and a fixed contact angle at the top boundary. 
Such a two-point boundary value problem does not 
yield a unique solution. Thus there arises the problem 
of selecting, out Iof the multiple solutions that are 
mathematically permissible, the one that corresponds 
to the physical equilibrium condition that exists in 
reality. Therefore we now invoke the thermodynamic 
condition that at equilibrium the free energy is a mini- 
mum and select the solution that minimizes the free 
energy. 

For simplicity, we consider only the isothermal con- 

dition and examine the Helmholtz free energy, which 
contains three contributions : 

(i) the potential energy from the effective head ; 
(ii) the surface energy of the meniscus forming the 

gas-liquid interface ; 
(iii) the surface energy needed to wet the solid- 

liquid wetted area. 

The equilibrium shape is the one that minimizes the 
total free energy : 

E = 
s 

; [@-‘(Apgy-AP)+27c(rf(l +f”)“‘] dy 

-xor,’ cos (q&) (4) 

where &, is the static contact angle. The Young- 
Laplace equation may be integrated, starting with a 
fixed radius and base angles, -7112 < &, < n/2, to 
yield all possible solutions for a given aspect ratio of 
the domain. Subsequently, solutions satisfying a given 
contact angle at the top, b,, are selected and their free 
energies calculated according to equation (4). If any 
of these solutions locally minimize the free energy, 
then these profile shapes are statically stable. 

As described in refs. [l, 21, the value of & is speci- 
fied, and E is calculated by fixing the value of & in 
equation (4) and scanning through the whole range 
of meniscus profiles obtained by fixing the lower tri- 
junction location (with varying angle) and the height 
of the upper trijunction point (with varying locations 
and angles), distinct extrema are obtained at specified 
values of &, Among the multiple solutions, the one 
corresponding to a point of minimum on the curve is 
the physically realizable stable meniscus profile. When 
either a maximum or a non-extremum point arises, 
we may surmise that such solutions belong to the 
unstable branch. 

The volume of the melt zone in non-dimensional 
form is given by, 

AR 

v= 1 nf’dy (5) 
Jo 

where AR = h,/r, is the aspect ratio of the zone. The 
aim was to determine the sensitivity of the profile 
shapes to the imposed boundary conditions. In float 
zones, the meniscus profiles may be required to enclose 
a fixed volume of the melt, thus satisfying equation 
(5) [15, 17, 19, 20, 221. As will be demonstrated, the 
basic considerations from free energy and uniqueness 
can shed useful light on the issues relevant to the float 
zone. It is also noted that additional forces may be 
generated on the free surface due to electromagnetic 
effects if the zone is heated by an induction coil [13, 
231. 

2.2. Effect of convection on meniscus shape 
It may be expected that convection in the melt will 

impact the meniscus shape through the normal stress 
terms, which will be balanced by the free surface cur- 
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vature. In addition, the free surface will no longer be 
an isotherm, which implies that the surface tension 
will vary from point to point, reflecting the spatial 
distribution of the temperature along the free surface. 
Equation (la) must be modified as follows : 

1 

_f(l ,f”)“’ 1 (6) 
where p is the viscosity of the melt. This can be non- 
dimensionalized in a manner similar to equation (la), 
along with the reference velocity scale defined as a/rb, 
where t( is the thermal diffusivity. In non-dimensional 
form, this becomes : 

1 

_f(l ff’2)“2 1 (7) 

where Ca is the capillary number defined as 2~a/a,r,, 
where c( is the thermal diffusivity, 6, is the surface 
tension at the reference temperature and the italics 
denote the non-dimensionalized variables. The capil- 
lary number and the Bond number determine the rela- 
tive influence of the hydrostatic and the convective 
effects, respectively. The term premultiplying the cur- 
vature term describes the correction due to the vari- 
ation of surface tension with temperature. In this 
study, as will be presented later, it is found that the 
capillary number, Ca, and the normal gradient of 
the normal velocity are both small compared to the 
hydrostatic term, from an a posteriori estimation, and 
hence meniscus shapes are generated based on equa- 
tion (la). 

Only the steady state has been considered in this 
study. Dynamic effects have been considered by sev- 
eral investigators [24-261. Quasi-equilibrium studies 
involving contact angle hysterisis have been treated in 
refs. [l, 21. It is considered that the phenomenon of 
contact angle hysteresis is largely due to surface 
roughness [27] and surface inhomogeneity [2]. In the 
present study, it is considered that the melt zone moves 
slowly and a static consideration suffices. 

3. FORMULATION AND COMPUTATIONAL 
ALGORITHM FOR TRANSPORT PROCESSES 

The most influential process variables governing 
the crystal growth process are the heat and solute 
transport processes in the melt, which directly impact 
the shape and movement of the solid-liquid interface 
at the solidifying front. In the following section, a 
meniscus configuration frequently encountered in 
practical float zone processes is isolated for detailed 
analysis of the heat transport within the melt. Of par- 

buoyancy driven and thermocapillary convection pro- 
cesses and the mutual interaction of the convection 
processes with the shape of the free surface in deter- 
mining the heat transfer within the melt. Phase change 
and solute transport effects are deferred to a future 
study. 

The Navier-Stokes equations along with the energy 
equation are written in cylindrical coordinates to 
facilitate the treatment of the axisymmetric geometry 
shown in Fig. l(b). The numerical scheme involves 
the discretization of the transformed form of the gov- 
erning equations based on a control volume for- 
mulation as described in refs. [2, 32, 331. The relevant 
aspects of this procedure are described below. 

An appropriate choice of scales for the non-dimen- 
sionalization procedure was arrived at by selecting the 
base radius, rs, as the characteristic length scale and 
the characteristic velocity scale was based on the ther- 
mal diffusion velocity scale defined as c(/Y~, where c( is 
the thermal diffusivity defined as k/p& The selection 
of the temperature scale is not as straightforward, 
since the boundary condition at the free surface is 
specified as a heat flux from which an estimate of 
the maximum temperature in the domain has to be 
derived. The procedure is explained below in detail. 

It is noted that, since heat flux is specified on the 
free surface, a temperature scale has to be derived in 
order to non-dimensionalize the energy equation and 
define the Grashof and the Marangoni numbers. It 
would seem natural to define a 
based on the heat flux as follows : 

AT= yd 

temperature scale 

@a) 

where qmax is the maximum value of the heat flux 
specified on the boundary. However, it was noted that 
such a definition overestimated the temperature scale, 
i.e. the maximum temperature achieved in the domain, 
even for the conduction case, was at least five times 
less than the value suggested by equation (8a). It was 
expected that the maximum temperatures obtained by 
taking convection into account would be even less. 
Therefore the temperature scale obtained above was 
scaled down by a factor of 10 in order to obtain a more 
realistic temperature scale. Therefore the temperature 
scale used to calculate the Grashof and Marangoni 
numbers is : 

AT= 0.1 xyd. WI 

As to the convection mechanisms, the buoyancy 
effect within the melt and the thermocapillary effect 
on the free surface have been included in this model. 
The strength of buoyancy induced convection is indi- 
cated by the Rayleigh number defined as 

Ra = Gr- Pr (94 

titular interest in the following study is the role of where Gr is the Grashof number defined as 
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Gr = gr& 
v2p 

Invoking the Boussinnesq approximation, this 
becomes 

and Pr is the Prandtl number defined as 

pr=Q. 
k 

The relative magnitude of the thermocapillary effect 
is described by the Marangoni number, 

I I gT ATr, 

Ma= 
w 

(10) 

where da/dT describes the variation of the surface 
tension with the temperature. 

The governing equations may be non-dimen- 
sionalized with respect to the reference scales 
described at the start of this section, as follows : 

(i) continuity 

ah> I %4 _ o 

ar ay 
(ii) radial momentum 

a(rd) a(m) ap a au ___ 
& 

-z-r-+$+ _ r- 

+ ay ar H > ar ar 

a au 
+ay ‘ay ( >I -PrF (llb) 

(iii) axial momentum 

a(rufJ) a(rv*) ap a a0 ~ -=:_r-+pr - r_ 
ar + ay ay H > ar ar 

+rRaPrT (11~) 

(iv) energy 

a(ruT) a(ruT) 
p+T-= [$(rg)+$(r$)] (lid) ar 

where Pr is the Prandtl number and Ra is the Rayleigh 
number defined as : 

pr = T 
a 

Ra = gBAL).rZ 
VCL 

(114 

(llf) 

and the italics denote the non-dimensional variables. 
Here u and v are the velocity components in the radial 
and axial directions, respectively. The Boussinnesq 
approximation is employed wherein density variations 
are neglected in the governing equations except the 

body force terms due to buoyancy, in the momentum 
equations. Only the right half of the domain is con- 
sidered in the calculation procedure and symmetry 
boundary conditions are applied at the centerline. The 
associated boundary conditions are listed below in 
non-dimensional form : 

symmetry 

atr=O, 
au aT 

u=ar=ar= 
0 (12a) 

top and bottom boundaries 

aty=Oand 1 T=O, u=u=O. (12b) 

At the free surface, r =f(y) : 
(i) heat flux through the free surface (dimen- 

sionless), 

q = VT-ii (12c) 

which equals the normal derivative of the temperature 
at the free surface, and ri is the unit normal vector to 
the free surface ; 

(ii) Marangoni effect, 

V(V*i)*)-i = MaVT*i (12d) 

where the shear stress equals the surface tension gradi- 
ent and gives rise to the normal derivative of the 
tangential velocity at the free surface. V is the velocity 
vector and i is the unit tangent vector to the free 
surface ; 

(iii) kinematic condition at the free surface 

v*ri=o (12e) 

specifies a no-penetration condition at the free surface. 

4. RESULTS AND DISCUSSION 

4.1. Prediction of meniscus shapes 
Meniscus profiles were obtained by solving the 

Young-Laplace equation in cylindrical coordinates 
subject to the boundary conditions of fixed radius at 
the bottom and either (I) fixed contact angle at the 
top, or (II) fixed volume of the liquid bridge (half 
domain assuming axial symmetry). 

4.1.1. Low bond number cases. Initial calculations 
were conducted following the model proposed by 
Shyy et al. [l] and compared with experimental data 
provided by Dreeben et al. [28]. The parameters were 
as follows : rb = 242 /*m, Bo = 2.825 x 10p3, 
AR = 2.24, contact angle, & = 115 deg and press- 
urization, AP = 4.35% of the ambient pressure 
given by Pamblent = 1.0 x lo5 N m-*. Here rb is the 
radius of the feed rod and it is assumed that the men- 
iscus profile is pinned to the edge of the feed rod. It 
may be noted from the photographs of floating zones 
provided in ref. [28] that the contact angle is not 
constant over the contact line, nor is the liquid bridge 
axisymmetric. The solid-liquid interface is curved and 
not flat, as is assumed in the simplified model used in 
the present calculations. It may also be noted that the 
variation of surface tension with temperature is also 
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Fig. 2. Comparison of calculated meniscus shapes with the experimental data of Dreeben et al. [28]. (i) 
Calculated and experimentally obtained profiles. It may be observed that two solutions are obtained with 
the given contact angle of 115”. The profile with the lower free energy matches the experimentally observed 
profile closely. (ii) rc vs $c. (iii) E vs +=. (iv) +c vs &,. The discrepancy between the observed and the 
calculated results comes from the non-axisymmetry of the experimentally observed profile, the variation 

of the contact angle along the contact line and curved solid-liquid boundaries. 

not considered in this model. The material under con- 

sideration is sapphire (A&O,). Figure 2 shows the 
meniscus profiles obtained using the theoretical model 
as well as the experimental data. 

In Fig. 2. (i) shows the actual profiles obtained by 
integrating the Young-Laplace equation, that satisfy 
the imposed contact angle condition at the top, (ii) 
shows the rc vs c#J,, (iii) shows & vs c#J,, and (iv) is the 
free energy curve, E vs &. In (i), the experimental 
data from ref. [28] is shown alongside for comparison 
purposes. (ii) and (iii) show the range of solutions 
which may be obtained from the Young-Laplace 
equation. It is obvious that there are two solutions 
satisfying the given contact angle condition. The pro- 
file that minimizes the free energy is shown with a 

solid line and it matches the experimentally observed 
profile closely. 

A sensitivity study has been conducted to study the 
formation and physical realizability of the meniscus 
profiles subject to various boundary conditions and 
parameters. First, holding the Bond number constant, 
the aspect ratio was varied over the range 
0.5 < AR < 2.25. Figure 3(a) shows the profile shapes 
at each aspect ratio. Multiple solutions may exist, 
especially at lower aspect ratios. Only the profiles 
having the lower free energy are shown. 

With a set pull rate and heater power, at steady 
state, the float zone occupies a prescribed volume. 
Hence it is useful to examine the solution charac- 
teristics subject to the constraint of a fixed volume. 
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However, in reality, the change in heat transfer 
characteristics due to the coupling between the move- 
ment of the float zone and heat transfer due to con- 
duction as well as buoyancy driven flow, may result 
in changes of the prescribed melt volume with time. 
Furthermore, the issue of viewing the static contact 
angle as a mater] al property needs to be addressed 
also. 

Figure 3(b) displays free energy curves at selected 
aspect ratios. It may be seen that all the selected 
curves, except the case of AR = 1.75, show a local 
minimum at &, = 115”. The profile shown at 
AR = 1.75 cannoi achieve static stability for the speci- 
fied contact angle. It is interesting to observe that such 
a ‘window’ of AR exists within which, although the 
menisci exist mathematically. they are not physically 
realizable. Above and below this ‘window’ statically 
stable menisci exist. 

4.1.2. Higher bond number cases. In practice, the 
geometrical configurations employed result in a higher 
value of the Bond number. In particular, we are inter- 
ested in the following configuration. Given a feed rod 
diameter of 25 mm [ 181, and a surface tension of 0.69 
N m-’ for A&O,, and 1.35 N m-’ for NiAl [29], the 
Bond numbers are 7.6 and 5.7, respectively. Thus the 
Bond numbers lie in the range 5-10. 

The meniscus shape is substantially influenced by 
the value of AP, pressurization, in equation (1). In 
literature, the value of the pressurization is usually 
determined by satisfying a constant volume criterion 
in addition to the boundary conditions imposed. In 
the present calculations, the objective was to, instead, 
find a range of pressurization values for which aspect 
ratios close to unity can be achieved. For a Bond 
number of 8.8, which was selected in order to effect a 
comparison with the results of Quon et al. [30], it 
was found that aspect ratios of unity could only be 
achieved in the range 0.2 < AP d 0.3. The pre- 
ssurization ranges obtained here are used to generate 
the subsequent solutions. 

Calculations were carried out for aspect ratio of 
unity, Bond number of 8.8 and six values of pre- 
ssurization in the range. 0.2 d AP < 0.3. Figures 4 
and 5 show the results of the calculations. 

Figure 4 shows the profiles and the corresponding 
free energy curves that are obtained when contact 
angles of 30 and 60” are imposed. The free energy 
curves also indicate the range of contact angles for 
which the Young-Laplace equation can be integrated. 
It is useful to draw attention to the case of & = 30”, 
AP = 0.2295%. It may be observed that two profiles 
are obtained, marked in Fig. 4(i) with the solid curves, 
one of them also marked with ‘0’. The corresponding 
free energy curve in Fig. 4(iii) is marked with ‘0’ and 
shows that two solutions can be obtained, one of 
which satisfies a local minimum. In Fig. 4(i), the 
unmarked solid curve satisfies a local minimum, indi- 
cating static stability. For & = 60”, none of the 
obtained profiles satisfy a local minimum. 

Figure 5 shows profiles that (i) meet a fixed radius, 

rC, condition for three values of r,/r,, = 1.0, 0.75 and 
0.5, and (ii) meet a fixed volume constraint of V = 2 
and 3 (non-dimensionalized). The corresponding rC vs 
q& and V vs #Q show the overall range over which the 
Young-Laplace equation can be integrated. It may 
also be noted that the overall solution behavior does 
not show any abrupt changes as the pressurization, 
AP, is varied over the specified range. Hence, the 
curves shown in Fig. 5(iv) help in determining the 
existence of solutions that can simultaneously satisfy 
a given contact angle condition and a fixed volume. 
The free energy curves, such as those shown in Fig. 
4(iii), show whether the calculated profiles shapes are 
statically stable. 

4.2. Heat transfer calculations 
A series of calculations were carried out with the 

geometry of the free surface being determined by the 
case of Bo = 8.8, AP = 0.2%, aspect ratio of unity 
and with r, = rh as shown in Figure 5. The material 
selected for simulation has the composition N&Al,. 
The thermophysical properties of this material are 
listed in the table below. 

Then, recalling that phase change effects are not 
being considered, if the power input from the heater 
is 2.3 x lo6 W rnm2, then the temperature scale can be 
obtained from equation (8b) as AT = 36.5K. For the 
length scale defined by rb = 1.25 x lo-’ m, as in the 
previous calculations for the meniscus shape, this tem- 
perature scale implies a Marangoni number of 103, a 
Grashof number of 520 and a Prandtl number of 0.04. 
These values may vary with the composition of the 
NiAl, nevertheless, it appears that for the length scales 
under consideration, thermocapillary convection 
plays a dominant role in the heat transfer process. In 
this study, a range of non-dimensional parameters, 

0 < Gr < lo6 0 < Ma < 10’ and Pr = 0.04, 0.1 

have been considered for investigation. 
4.2.1. Numericalprocedure. The governing equation 

(11) is solved using a pressure-correction type of semi- 
implicit finite volume formulation in non-orthogonal 
body-fitted coordinates as described in ref. [2]. In this 
solution procedure, the Navier-Stokes equations and 

Table 1. Thermophysical properties of NiAl and process 
parameters. 

Density 6000 kg mm3 
Thermal conductivity 80Wm-‘Km’ 
Heat capacity 586 J kg-’ K-’ 
Coefficient of thermal expansion 1.51 x 10e5 K-’ 
Kinematic viscosity 9x lO~‘m*s- 
Surface tension coefficient -2.7xlO~+‘Nm-‘K~ 
Surface tension 1.35 N mm’ 
Latent heat 5.1 x lo5 J kg-’ 
Melting point 1900 K 
Gravitational acceleration -9.81 m s-* 
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Fig. 3. Meniscus profiles and assessment of physical realizability based on free energy for contact angle of 
115, Bo = 2.825 x 10m3 and 0.5 < AR < 2.25. (a) Meniscus profiles with the lower free energy. (b) Energy 
versus 4, curves for selected aspect ratios. It may be noted that at AR = 1.75, the free energy curve shows 
a local maximum and hence cannot be statically stable. All other curves display a local minimum, indicating 

static stability. 

the energy equation are integrated over the finite discretized using second order central differences. A 
volume, with the fluxes computed numerically by body-fitted coordinate system was generated over the 
appropriate choice of finite differences. The solution right half of the geometry shown in Fig. l(b) using 
strategy employs a pressure-based algorithm [2, 311 transfinite interpolation. The grid points were clus- 
wherein each field equation is solved for in an iterative tered towards the free surface and for the com- 
manner along with a pressure correction equation to putations involving Marangoni convection, the grid 
ensure that the velocity variables satisfy mass con- points were also clustered towards the lower boundary 
servation. The convection and the diffusion terms in at y = 0. For the cases involving only natural convec- 
both the momentum and the energy equations are tion, two grid systems involving 81 x 52 nodes and 
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Fig. 4. Calculations for Bond number of 8.8, unity aspect ratio and imposed contact angle condition. (i) 
and (ii) Profiles meeting a desired contact condition of 30” and 60” respectively. (iii) and (iv) Free energy 
curves for imposed contact angles of 30” and 60” respectively, for the various values of the pressurization 
considered. The curves in (iii) and (iv) use the same convention to indicate the pressurization value. (iii) 
and (iv) also indicate the range of values of & which are obtainable by integrating the Young-Laplace 
equation. I[t may be noted that for $I,, = 30”, and AP = 0.2295%, there are two profiles satisfying the given 
contact condition, indicated by the solid curves. The profile marked with 0 does not minimize the free 
energy whereas the unmarked one does. None of the other profiles correspond to a local minimum, 
indicating that, although they mathematically satisfy the Young-Laplace equation, they are not statically 

stable. 

161 x 103 nodes, respectively, were used to discretize bers in subsequent calculations. It may be noted that 
the domain. The solutions are indistinguishable, indi- due to the curved geometry of the free surface, the 
cating grid independence. The solutions presented are location of the maximum temperature shifts towards 
based on the grid system involving 161 x 103 nodes the convex portion of the free surface, as is evident 
for cases not involving Marangoni convection and from Fig. 6(a). It is noted that the nondimensional 
401 x 201 nodes for cases involving Marangoni con- value of T,,,,, is 2.3 based on the temperature scale 
vection. defined in equation (8b). 

4.2.2. Pure conduction case. A calculation was car- 4.2.3. Natural convection only. Figure 6(b) shows 
ried out with the heat transfer taking place through the results of incorporating the effects of buoyancy 
conduction effects only. The purpose was to carry out induced convection with a Grashof number of lo6 and 
an a posteriori verification of the temperature scales a Prandtl number of 0.1. The streamline pattern shows 
used to define tb: Grashof and the Marangoni num- a single recirculating zone in each half of the domain 
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Fig. 5. Calculations for Bond number of 8.8, unity aspect ratio and either (a) imposed radius at the top, 
or (b) imposed volume of the melt. (i) Fixed r, and (ii) fixed volume. (iii) rJrb versus +c and (iv) volume 
versus & curves. The curves in (iii) and (iv) use the same convention to indicate the pressurization value. 
(iii) and (iv) also indicate the range of values of 4, which are obtainable by integrating the Young-Laplace 

equation. 

and is tangential to the free surface. It may be recalled 
that since surface tension effects have not been 
accounted for. the free surface does not exert a shear 
stress on the fluid. The fluid adjacent to the free surface 
is heated and rises to the top of the domain due to 
buoyancy effects, causing the isotherms to be distorted 
towards the top of the domain and the location of 
T,,,,, to correspondingly shift upwards. The magnitude 
of Tln,X drops to 1.14, reflecting the validity of the 
temperature scale defined by equation (8b). 

4.2.4. Interaction of buoyancy driven and Marangoni 
convection. (a) Gr = 106, Pr = 0.1 and Ma = 500. Fig- 
ure 7(a) shows the streamfunction and isotherms by 
imposing a Marangoni number of 500. Since the sur- 
face tension decreases with temperature, the tendency 
of the surface tension gradient-induced shear stress is 
to reduce the convection strength in the vicinity of 

the convex part of the free surface and increase the 
convection strength near the upper part of the domain 
where the free surface is concave. The overall effect is 
to marginally shift the location of T,,,,, in the down- 
ward direction, towards the convex portion of the free 
surface. 

(b) Gr = 106, Pr = 0.1 and Ma = 1000. Figure 7(b) 
shows the effect of increasing the Marangoni number. 
The trends established in the previous case continue, 
shifting the location of T,,,,, downwards towards the 
convex portion of the free surface. Since the con- 
vection strength in the vicinity of T,,, is further 
reduced, the value of T,,,,, also increases. 

(c) Gr = 2000, Pr = 0.1 and Ma = 1000. Figure 
7(c) shows the effect of decreasing the relative strength 
of buoyancy-induced convection vs Marangoni con- 
vection. In this case, the convection pattern is domi- 
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Fig. 6. Effect of natural convection on heat transfer in the float zone. (a) Conduction case. The location of 
maximum temperature, T,,,,,. indicates the effect of boundary curvature. (b) Gr = IO6 and Pr = 0.1. 
Buoyancy driven convection reduces the maximum temperature and shifts its location upwards, following 
the direction of the velocity field at the boundary. The notable feature is a single counterclockwise rotating 

convection roll whose spatial extent is of the order of the dimensions of the melt region. 

nated by the Marangoni effect. The convection pattern 
consists of counter-clockwise rotating convection rolls 
at the top right and the bottom left of the melt adjacent 
to the free surface and clockwise rotating convection 
rolls at the bottom right and the top left of the domain. 
The convection rolls adjacent to the convex portion 
of the free surfacj:, which occurs at the lower portion 
of the boundary, are substantially stronger because of 
the stronger temperature gradients along the convex 
portion of the free surface. The location of T,,,,, is close 
to that of the pure conduction solution as compared to 
the high Gr cases. The effect of Marangoni convection 
is to shift the location of T,,,,, to the convex portion 
of the boundary. 

(d) Gr = 2000, Pr = 0.04 and Mu = 1000. Figure 8 
shows the effect of decreasing the Prandtl number. 
The effect of low’er Prandtl number is to increase the 
effective Reynolds number of the flow [2] by decreas- 
ing the magnitudl: of the viscous terms in the momen- 
tum equations. T:he convection pattern is qualitatively 
similar to the case shown in Fig. 7(c). It may be 
observed that the isotherms are distorted near the 
convex portion of the free surface, due to the strong 
fluid convection, whereas in the upper portion of the 
domain the pattern resembles the pure conduction 
case. 

From the above cases, some useful inferences can 
be made that are directly applicable to the float zone 
growth of NiAl. For the length scales of current exper- 
imental interest, it is observed that the pure con- 
duction model of heat transfer is inadequate. Strong 
convective heat transfer effects may be observed domi- 
nated by the Marangoni effect. The Marangoni effect 
causes clockwise recirculating convection rolls in the 

bottom right and top left of the domain and counter- 
clockwise recirculating rolls at the top right and bot- 
tom left of the domain. For the high Bond numbers 
that prevail under l-g conditions on Earth, the free 
surface has a convex shape in the lower portion of 
the melt due to the hydrostatic pressure of the melt 
column. This convex shape induces asymmetry in the 
shape, spatial extent and strength of the convection 
rolls and the distribution of the temperature. For the 
pure conduction case, the convex shape causes the 
location of the maximum temperature to be shifted 
towards the convex side of the free surface. In the 
presence of Marangoni convection, this effect is aug- 
mented by the strong convective effect near the convex 
portion of the domain, due to the stronger tem- 
perature gradients along the convex portion of the free 
surface. This convection in turn causes the location of 
the maximum temperature to move further down- 
wards. The Marangoni convection completely over- 
whelms the buoyancy-driven convection for this par- 
ticular configuration and material properties, 
augmenting the buoyancy effect in the upper portion 
of the domain and counteracting it in the lower por- 
tion of the domain. Thus the dependence of surface 
tension on temperature plays a dominant role in the 
heat transfer characteristics in the float zone. 

4.3. Effect ofconvection on the meniscus shape 
The deformation of the free surface due to ther- 

mocapillary convection is dominated by the capillary 
number. For example, Zebib et al. [3] have found 
that, whereas the shape is qualitatively sensitive to the 
Prandtl number, the magnitude of the deformation 
is determined, to the leading order, by the capillary 
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Fig. 7. Effect of Rayleigh and Marangoni number on transport characteristics for a Prandtl number of 0.1, 
(a) Gr = lo6 and Ma = 500. The onset of surface tension driven convection marginally decreases the overall 
convection strength and marginally shifts the location of T,,,,, in the negative z direction. The tendency of 
the surface tension gradient is to induce a clockwise convection roll in the lower portion of the domain and 
a counterclockwise roll in the upper portion of the domain, the spatial extent of which is confined to the 
region adjacent to the free boundary compared with the case of buoyancy driven convection. (b) Gr = lo6 
and Ma = 1000. Strong surface tension effects cause the overall convection strength to decrease and T,,,,, 
to increase and shift further in the downwards in the negative I direction. The tendency of the surface 
tension gradient is to induce a clockwise convection roll in the lower portion of the domain and a 
counterclockwise roll in the upper portion of the domain. (c) Gr = 2000, and Ma = 1000. With decreasing 
Grashof number, the lower clockwise rotating convection cell due to the Marangoni effect becomes more 
evident. The location of the maximum temperature shifts downward because of the convex shape of the 
lower part of the free surface. As a result, the convection in the upper and central regions is substantially 

weaker than the cases dominated by buoyancy induced convection. 
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Fig. 8. Effect of natural convection and Marangoni convection for a Prandtl number of 0.04. Gr = 2000 
and Ma = 1000. 
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Fig. 9. Semilog plot of y vs 1 + (Ca a V,/dn)/(Bo y) to show the locations where the normal stress term due 
to convection becomes important compared to the hydrostatic pressure. 

number. Equation (7) describes the role of the normal 
stress due to the normal derivative of the normal vel- 
ocity component at the free surface in changing the 
shape of the meniscus. Under l-g conditions and at 
the length scales considered, the hydrostatic terms 
described by the high Bond numbers are the dominant 
terms in equation 117) and the normal stress terms due 
to convection are small compared to the hydrostatic 
term. The Bond member for this case is Bo = 8.8 and 
the capillary number, Cu = 1.5 x 10-j. The impact on 
the surface curvature varies with the vertical distance 
and is described by 

l+ 
caav,jan 

Boy . 

This quantity may be plotted to show the variation of 
its magnitude alon,g the y-axis as shown in Fig. 9. This 
shows that, except at the lowermost corners of the 
domain, the normal stress term is vanishingly small. 
Considering that the meniscus is pinned at both the 
top and the bottom of the domain, the correction to 
the overall shape of the meniscus is expected to be 
modest except at the lowermost corner where the cur- 
vature will be substantially lower. Since the effect is 
extremely localized at the corner locations where the 
flow turns to match the boundary, the overall effect 
on the heat transfer and convection characteristics is 
expected to be negligible for this case. Accordingly, 
corrections to the meniscus shape appear unnecessary 
in this particular s:udy. It is also to be observed that 
the percentage variation of the surface tension with 

temperature is less than 1% and hence cannot sig- 
nificantly affect the force balance at the interface. 

5. CONCLUSION 

Computational studies have been carried out to 
assess the computed meniscus shapes based on the 
concept of free energy [l]. It is noted that as the Bond 
number is increased the number of available solutions 
drops sharply. With a given Bond number, a window 
of AR may exist, within which menisci may exist math- 
ematically, but are not physically realizable because 
they are not statically stable. Above and below this 
window, menisci are again statically stable. The physi- 
cal realizability of the meniscus profiles is sharply 
affected by the material properties such as surface 
tension and density through the Bond number, and 
the geometry through the Bond number and aspect 
ratio. However, the mathematical boundary con- 
ditions imposed have less impact on the meniscus pro- 
files. 

Having demonstrated the viability of the cal- 
culation procedure by comparison with experimental 
data, the procedure was applied to Bond numbers and 
geometrical parameters that are typical of float zone 
processes. Neglecting temperature variations and 
dynamical effects it is shown that static stability of the 
meniscus is much more difficult to achieve at high 
Bond numbers and high aspect ratios. Even though 
the Young-Laplace equation can be integrated to 
obtain meniscus profiles, many of these profiles fail 
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